Resit Exam — Analysis (WPMA14004) Tuesday 10 July 2018, 9.00h–12.00h University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (3 + 6 + 6 = 15 points)

Consider the set
$$A = \left\{ \frac{n}{n+k} : n, k \in \mathbb{N} \right\}$$
.

- (a) State the Axiom of Completeness.
- (b) Prove that $\sup A = 1$.
- (c) Prove that $\inf A = 0$.

Problem 2 (5 + 5 + 5 = 15 points)

Let $x_1 = 5$, and define the sequence

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right).$$

Prove the following statements:

- (a) $x_n > \sqrt{5}$ for all $n \in \mathbb{N}$. Hint: first show by induction that $x_n^2 > 5$.
- (b) $x_{n+1} < x_n$ for all $n \in \mathbb{N}$. Hint: compute the difference $x_n x_{n+1}$.
- (c) $x = \lim x_n$ exists and $x = \sqrt{5}$.

Problem 3 (3 + 9 + 3 = 15 points)

- (a) Give the definition of a limit point of a set.
- (b) Recall that the closure of a set A is given by $\overline{A} = A \cup L$, where L is the set of limit points of A.

Prove the following statement:

x is a limit point of $A \Leftrightarrow x$ is a limit point of A.

(c) Show that for any set A the closure \overline{A} is closed.

Problem 4 (5 + 5 + 5 = 15 points)

Let $f: [0,3] \to \mathbb{R}$ be differentiable, and assume that

$$f(0) = 1, \quad f(1) = 2, \quad f(3) = 2.$$

Prove the following statements:

- (a) There exists $a \in [0,3]$ such that f(a) = a;
- (b) There exists $b \in [0,3]$ such that f'(b) = 1/3;
- (c) There exists $c \in [0,3]$ such that f'(c) = 1/4.

Problem 5 (9 + 6 = 15 points)

Assume that the power series

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

converges at some point $x_0 > 0$.

- (a) Show that the series $\sum_{n=0}^{\infty} |a_n x^n|$ converges for any $x \in (-x_0, x_0)$. Hint: show that the sequence $(a_n x_0^n)$ is bounded and then apply the comparison test.
- (b) Let $0 < c < x_0$. Prove that $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on the interval [-c, c]. Hint: use the Weierstrass test.

Problem 6 (10 + 5 = 15 points)

Let $\{r_1, r_2, r_3, \dots\}$ be an enumeration of all rational numbers in [0, 1], and define

$$f_j(x) = \begin{cases} 1 & \text{if } x = r_j \text{ for some } j \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Prove that f_j is integrable on [0,1] for all $j \in \mathbb{N}$ and compute $\int_0^1 f_j$.
- (b) Is $F(x) = \sum_{j=1}^{\infty} f_j(x)$ integrable on [0, 1]?

End of test (90 points)

Solution of problem 1 (3 + 6 + 6 = 15 points)

- (a) Every set of real numbers that is bounded above has a least upper bound.(3 points)
- (b) We claim that $\sup A = 1$. First note that the number 1 is an upper bound of A. Indeed,

$$n+k > n \quad \Rightarrow \quad \frac{n}{n+k} < \frac{n}{n} = 1.$$

(1 point)

To show that we have found the least upper bound we can proceed in two different ways.

Method 1. Let u be any upper bound for A, then $n/(n+k) \leq u$ for all $n, k \in \mathbb{N}$. In particular, by taking k = 1, it follows that $n/(n+1) \leq u$ for all $n \in \mathbb{N}$. The sequence $x_n = n/(n+1)$ is convergent. By the Order Limit Theorem it follows that $\lim x_n \leq u$ which implies that $1 \leq u$. This shows that $\sup A = 1$. (5 points)

Method 2. Let $\epsilon > 0$ be arbitrary, and take k = 1 and $n \in \mathbb{N}$ such that $n > (1 - \epsilon)/\epsilon$. Then

$$\frac{n}{n+k} = \frac{n}{n+1} = \frac{1}{1+1/n} > 1 - \epsilon.$$

This shows that $1 - \epsilon$ is not an upper bound of A. We conclude that $\sup A = 1$. (5 points)

(c) We claim that $\inf A = 0$. First note that the number 0 is a lower bound of A. (1 point)

To show that we have found the greatest lower bound we can proceed in two different ways.

Method 1. Let ℓ be any lower bound for A, then $\ell \leq n/(n+k)$ for all $n, k \in \mathbb{N}$. In particular, by taking n = 1, it follows that $\ell \leq 1/(1+k)$ for all $k \in \mathbb{N}$. The sequence $x_k = 1/(1+k)$ is convergent. By the Order Limit Theorem it follows that $\ell \leq \lim x_k$ which implies that $\ell \leq 0$. This shows that $\inf A = 0$. (5 points)

Method 2. Let $\epsilon > 0$ be arbitrary, and take n = 1 and $k \in \mathbb{N}$ such that $1/k < \epsilon$. Then

$$\frac{n}{n+k} = \frac{1}{k+1} < \frac{1}{k} < \epsilon.$$

This shows that ϵ is not a lower bound of A. We conclude that $\sup A = 1$. (5 points)

Solution of problem 2 (5 + 5 + 5 = 15 points)

(a) Since $x_1^2 = 25 > 5$ the statement is true for n = 1. (1 point)

Now assume that $x_n^2 > 5$ for some $n \in \mathbb{N}$, then

$$x_{n+1}^2 - 5 = \frac{1}{4} \left(x_n^2 + 10 + \frac{25}{x_n^2} \right) - \frac{20}{4} = \frac{1}{4} \left(x_n^2 - 10 + \frac{25}{x_n^2} \right) = \frac{1}{4} \left(x_n - \frac{5}{x_n} \right)^2 \ge 0.$$

Since $x_n > \sqrt{5}$, it follows that $x_{n+1}^2 - 5 > 0$. By induction, $x_n^2 > 5$ for all $n \in \mathbb{N}$. (3 points)

Either $x_{n+1} > \sqrt{5}$ or $x_{n+1} < -\sqrt{5}$. From the definition of the sequence (x_n) it follows that $x_n > 0$ implies that $x_{n+1} > 0$. Since $x_1 > 0$, it follows that $x_n > 0$ for all $n \in \mathbb{N}$ and this rules out the possibility of having $x_n < -\sqrt{5}$. (1 point)

(b) By part (a) it follows that

$$x_n - x_{n+1} = x_n - \frac{1}{2} \left(x_n + \frac{5}{x_n} \right) = \frac{x_n}{2} - \frac{5}{2x_n} = \frac{x_n^2 - 5}{2x_n} > 0$$

which implies that $x_{n+1} < x_n$. (5 points)

(c) By parts (a) and (b) it follows that (x_n) decreases and is bounded from below. The Monotone Convergence Theorem implies that x = lim x_n exists.
(3 points)

Note that $x = \lim x_{n+1}$ as well. The Algebraic Limit Theorem shows that x satisfies the equation $x = \frac{1}{2}(x+5/x)$, or, equivalently, $x^2 = 5$. Hence, $x = \sqrt{5}$. (2 points)

Solution of problem 3 (3 + 9 + 3 = 15 points)

- (a) A point x ∈ ℝ is a limit point of A ⊂ ℝ if for every ε > 0 the neighborhood V_ε(x) intersects A in a point other than x itself.
 (3 points)
- (b) Proof of "⇒": Note that A ⊂ A. If V_ϵ(x) intersects A in a point other than x itself, then V_ϵ(x) certainly intersects A in a point other than x itself.
 (2 points)

Proof of " \Leftarrow ": If x is a limit point of \overline{A} , then for every $\epsilon > 0$ there exists $y \in V_{\epsilon}(x) \cap \overline{A}$ with $y \neq x$. (2 points)

Note that either $y \in A$ or $y \in L$. If $y \in A$, then it follows that x is a limit point of A and we are done.

(2 points)

If $y \in L$, then for all $\delta > 0$ there exists $z \in V_{\delta}(y) \cap A$ with $z \neq y$. For $\delta > 0$ sufficiently small we have $V_{\delta}(y) \subset V_{\epsilon}(x) \setminus \{x\}$ and this implies that $z \neq x$. Therefore, we have shown that $V_{\epsilon}(x)$ intersects A in a point different from x and thus x is a limit point of A.

(3 points)

(c) From part (b) it follows that A and A have the same limit points. Hence, A by definition contains all of its limit points and hence is closed.
(3 points)

Solution of problem 4 (5 + 5 + 5 = 15 points)

- (a) Define the function g(x) = f(x) x which is continuous by the Algebraic Continuity Theorem. Note that g(0) = f(0) = 1 > 0 and g(3) = f(3) 3 = -1 < 0. By the Intermediate Value Theorem there exists a ∈ (0,3) such that g(a) = 0, or, equivalently, f(a) = a.
 (5 points)
- (b) By the Mean Value Theorem there exists $b \in (0,3)$ such that

$$f'(b) = \frac{f(3) - f(0)}{3 - 0} = \frac{2 - 1}{3 - 0} = \frac{1}{3}.$$

(5 points)

(c) Since f(1) = f(3) Rolle's Theorem implies that there exists d ∈ (1,3) such that f'(d) = 0.
(2 points)

Since $0 < \frac{1}{4} < \frac{1}{3}$ it follows by Darboux's Theorem that there exists $c \in (0,3)$ such that $f'(c) = \frac{1}{4}$. (3 points)

Solution of problem 5 (9 + 6 = 15 points)

(a) Since the series ∑_{n=0}[∞] a_nx₀ⁿ converges, it follows that lim a_nx₀ⁿ = 0. In particular, the sequence (a_nx₀ⁿ) is bounded, which means that there exists a constant C > 0 such that |a_nx₀ⁿ| ≤ C for all n ∈ N.
(3 points)

Let $x \in (-x_0, x_0)$ so that $|x| < |x_0|$. Then

$$|a_n x^n| = \left|a_n x_0^n \left(\frac{x}{x_0}\right)^n\right| = |a_n x_0^n| \cdot \left|\frac{x}{x_0}\right|^n \le C \left|\frac{x}{x_0}\right|^n \quad \text{for all } n \in \mathbb{N}.$$

(3 points)

Since $|x/x_0| < 1$ the geometric series $\sum_{n=0}^{\infty} C |x/x_0|^n$ converges. By the Comparison Test it follows that the series $\sum_{n=0}^{\infty} |a_n x^n|$ converges. (3 points)

(b) Let $0 < c < x_0$ and $f_n(x) = a_n x^n$. We have $|f_n(x)| \le |a_n c^n| =: M_n$ for all $x \in [-c, c]$ and $n \in \mathbb{N} \cup \{0\}$. By part (a) it follows that $\sum_{n=0}^{\infty} M_n < \infty$. By the Weierstrass test it follows that $\sum_{n=0} f_n(x)$ converges uniformly on [-c, c]. (6 points)

Solution of problem 6 (10 + 5 = 15 points)

(a) Let $\epsilon > 0$ be arbitrary and take the partition

$$P = \{x_0 = 0, x_1 = r_j - \frac{1}{2}\epsilon, x_2 = r_j + \frac{1}{2}\epsilon, x_3 = 1\}.$$

(3 points)

We have

$$m_{1} = \inf_{x \in [x_{0}, x_{1}]} f_{j}(x) = 0,$$

$$m_{2} = \inf_{x \in [x_{1}, x_{2}]} f_{j}(x) = 0,$$

$$m_{3} = \inf_{x \in [x_{2}, x_{3}]} f_{j}(x) = 0,$$

$$M_{1} = \sup_{x \in [x_{0}, x_{1}]} f_{j}(x) = 0,$$

$$M_{2} = \sup_{x \in [x_{1}, x_{2}]} f_{j}(x) = 1,$$

$$M_{3} = \sup_{x \in [x_{2}, x_{3}]} f_{j}(x) = 0,$$

(3 points)

This gives

$$U(f_j, P) - L(f_j, P) = \sum_{k=1}^{3} (M_k - m_k)(x_k - x_{k-1}) = (r_j + \frac{1}{2}\epsilon) - (r_j - \frac{1}{2}\epsilon) = \epsilon.$$

This shows that each f_j is integrable. (3 points)

In addition, we have that

$$\int_0^1 f_j = \sup\{L(f_j, P) : P \text{ partition of } [0, 1]\} = 0.$$

(1 point)

(b) We can rewrite the function $F(x) = \sum_{j=1}^{\infty} f_j(x)$ as

$$F(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Let P be any partition of [0, 1]. Since each subinterval of P contains a rational number it follows that U(F, P) = 1.

(2 points)

Since each subinterval of P contains an irrational number it follows that L(F, P) = 0. (2 points)

Therefore, F is not integrable. (1 point)